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Foreword 

G. I* Taylor found a solution of  the gas dynamic 
eruaticns which describe? the pressure waves produced by an 
exclusion.  This dejcription can be used at distances from 
the explosive large compared to the explosive dimensions, 
but small enough that the shock pressure is large compared 
to atmospheric pressure.  In fact the explosive is assumed 
to be a point, and the atmospheric pressure is neglected 
compared to the shock pressure, in obtaining the solution. 
For these reasons, the solution is called either the "point 
blast" or "strong shock" solution.  The same solution was 
also obtained by J. von Neumann, and a solution of the same 
tyre was found for explosions in water by K. Primakoff. 
Similar solutions were studied by G. Guderley in Germany. 

The two opposing restrictions on the range of validity 
of the Taylor "point blast" solution are puch that, for 
ordinary explosives, there is practically no range in which 
they are both satisfied.  For nuclear explosives, however, 
the size of the explosive is so small tliat there is a range 
hi which this solution is useful.  This has been demonstrated 
by comparing this solution with experimental resiilts. 

In order to extend the solution to greater ranges, 
where the shock is wealcer, it is necessary to taKe account 
of Luc atmospheric pressure ahead of the shock.  The present 
report by Dr. Korawetz attempts to do this by determining a 
correction to the "point blast" solution, which correction 
is due to the previously neglected atmospheric pressure. 
A system of linear equations is obtained for the correction 
and.  their solution is analyzed.  Finally for the case of 
Primakoffs "point blast" in water, the solution is given 
explicitly and graphs of vai°ious quantities are given for 
both the original and the improved solutions. 

It cannot be expected that the range of validity of 
i the "point blast" solution can be extended very much by such 

a perturbation method.  However the qualitative and quantita- 
tive nature of the corrections can give an indication of the 
range at which the solution begins to fail, and can also 
indicate the manner in which the solution changes due to 
atmospheric pressure. 

Joseph B. Keller 

S5~«—"^»-^»^j|<y'^^>;^w.':y.».)»»-"^iyj:l''';»l»l;,-IIJ   <mmma® - .-ju-r—•  .,•••• !**|*SW^* 
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FE1Tim:<ATT0NS  ABOUT   STHOFG   SPHERICAL  SHOCK  W«VES 

Introduction. 

It hae been shown by G. I, Taylor and others that there 

are solutions of the equations of spherical flow of the form 

u = X'1 jf Uc(r
_Xt) 

c " X"T f C0(r"
Xt) 

t 

where X :1s any constant and U , C , Pn satisfy nonlinear 

ordinary differential equations.  These solutions, however, 

can represent a flox^ behind a shock only if we can neglect 

the pressure ahead of the shook,  Here we shall study the 

first order effects of this pressure and the modifications 

produced on the original flow, 

The problem of finding the flow behind an expanding 

shock wave of constant energy is reduced to solving some 

ordinary differential equations which depend only on y> ^Uai 

ratio of l,he specific heats.  In the case of y - 7, these 

equations can be solved am the perturbations in the flow 

quantities expressed explicitly. 

The difference between the flow behind a strong shock 

and a strong detonation can also bo studied in the same way. 

Th.-d  aquations of Motion. 

The equations for spherically symmetric flow are: 

1 v..    + uu  + — p  =0   , t    r  p ^r 

(1) Pt * upr + p(ur + St] - 0  , 

: (rp~Yn+ u'^p"Y)r 
= ° 

G. I. Taylor: W$  formation of a blast wave by a very 
intense explosion.  Proceeding's o:C  the Royal Society. Series A, 
Vol. 201, March 1950, n. 159." 
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where u is the radial velocity, p is the pressure, p is the 
density and y is the ratio of the specific heats of tne gas, 

while r is the distance from the origin end t is time. 
If we introduce the variables 

(2) 

(3) 

)\ = r-Xt 

U = Xtr u 

C = Xtr"1c = Xtr"1 !*£ 
vi P 

2 2 -2 P = Xtr cp 

dvj     dr ^ dt 
M     r   t 

where X is any positive constant, we obtain, using 

(k) 

in   f1). 

^Un(l-U)+ UtUt -Y -   p -Y"1C2 ~1-+Tj(alr_i) +2aY"
1C2 = 0 

(5) -VJUy^ +-T + -^P-( 1-U) - 2 -V^v 1-U) +U -p- - 2U -*± + 3aU = 0 
tct 
"TT 

>*?> 
^•^«) ^^-^^+^(1- aTj) = 0 

where a = X~ • 
Equations (5) may be rewritten as 

-1 2 tPt Dr^ = A - (l-TJ)tUt - Y •LG -~ 

(6) ^1 = Y-l tTT m     D  tCt 
"2T tTJt " T=V ~ 

tpt 
- YtUt - (1-U) -p~ 

(v-l) c2 tpt 
2Y T^U F 

whore 

t§mmBiW^ii 
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A = (l--U){l-alT)U -(3aU-2Y"
1(l-a))C2 

B= (l-u)(l-aU)-(Y-l)[(l-aU)- 4(l-a)jH- [o+Y^il-aJd-U)"
1^2 

(7! 
E= (1-U)[2(1+Y)(1-O.U) -3Y1 + Y(l-aU) - 2aC 

D= (1-U)2-C2 

2 

(8) 

There are two Identities relating A, B, D and E, 

-A + -§5-3(1-11) + D(3aU--§Y vx-aU)) = ° 

-A + Y"1 E(l-U) + D(3aU-2 (1-aU)) = 0 

The special solutions for spherical flow known as 

spherical "progressing" waves are solutions of (6) that are 

independent of t. They represent states behind or ahead of 

shocks and detonations if the shock or detonation front is 

given by Y\ =  constant. V/e represent any such flow by U (r^ ) , 

C (M) , P0(V^) •  Then from (6), we find the following 

nonlinear ordinary differential equations for UQ, CQ and P , 

(9) 

D VJU  = A 
O * OYl O 

n Y) -SB = E - o'I F_   o 

where A„ = A(U„,C„) etc. o     o o 
From the first two equations of (6) we obtain an 

equation for CQ as a function of U0, 

o _ o o 
307 " "XT  * o    o 

The solutions of this equation then yield, through (6), 

F and M as functions of u_. o     *• O 

«;  T- • 3«i3£Ki . 
,• •^•*f£^Zl&^*-' 

EMB^i^T^j^i^.t'i&^w' .'-O: djjiitv •fii^fii^Biiihl?^ .>*.«*-*:'• 



I*. 

We shall consider here flows that arc a^oproxirnately 

progressing waves, that is flows given by 

(10) 2- U = Uo(y^) + eU^.t) + 0(e
&) 

C - C0(V|)(l + eC1(yl,t) +0(e
2)) 

p - V *i)(1 + epi( n»t)+ °(e2)) 

where e is some small parameter. 

Substituting (10) in (6) and equating first order terms 

in e we find 

Win B (^X Ui+(^)c C°Cl 'Do1(1-uo)tuit- r^o^tp^ 

ncm - (l)° ui+ (§)° coCl - ^i D;iWlt 

Doi tClt  ~1 Co n.l._ 

(ID 

*pm= (i)° ui + (i)c coci- ^lfcuit - (I^O>D;1» it 

cG<V 

Conditions at a Shock. 

The boundary conditions on the flow quantities at a 

shock are given by 

p(u-z) = - p,z 

(12) t        >2        2 p(u-z, +p = Plz +p1 

&£•*>^iMU»ti)ii«i|iai»>a'iM<i'>j..li«i|ii|>.';t?"'^ij»«wuiiijl..i;iji.ijri »-. 

:'usi'..'r rssioisr-cBauEvi  r   r-:—     7  

«j» *** 
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where z is the velocity of the shock front, and p-^, p-^ are 
the density and pressure ahead of the front. 

In terms of the variables U, C, P of (3) equations (12) 
become 

p(U-Z) = - pxz 

(1.3) 

w^ere 

(llf) 

(15) 

2 ^2a.2-2a_ 
P(u-zr + p = P±z +\ ri ^t 

2,TT „v2  ,?  2,-2   2_2  ...  2. 2,2 2a,2-2a 
ix (U-Z) + (1-n )C = a- Z + (1-u- Jc-^X Y{    t 

Z = Xtr  z 

n2 = (Y-I)(Y+I)"X 

2      -1 cl = YPiPi 

From (13) we see that a spherical progressing wave can 
represent the state behind a shock for X ^  1 only if" c- = p, = 0, 

that is, only if the shock is infinitely strong.  In this 

case the position of the front is given by 

U?)    H=H0 

where H     is   some   constant and thus  from  (111) o 

nf\\ Z = Xtr"1 % » 1 

We assume now that the deviation in the shock path is 
small, and set 

(19) »7 = H (1 + eH1(t))  on the 3hock  . 

Then from (111) we find to first order in e 

(20) Z = 1 - etHlt 

Substituting (2o) in (13) and setting 

(21) e - X2c^a 

ISK^- 
«;••. i*'*.<>-*!• 

4M . ii mn i mi' uii 

-J| 1 



we   obtain 

(22) 

2\-2, 
0 =  (1-vid)(l-BtKlt -ers*    ) 

C2  -  ai(l+|x^:(l»2ear-Hlr+ e  -gr k£fcL t2"2a) 
^(l+ix ) 

.2, P = Pl(l-^)(l-2etHlt-e -^ iL_ t2"2a) 

for    H  = H  (1+ eH1(t)). 
On the  other hand,   expanding U(H   (l+eH,(t),tfe)   etc.   in 

^ovir.T«s  of  e  we   find 
X-  - * •  - 

(23)     U(Ha(l+eH1(t)},t,e) 

a Ut/H0(l+eH1(t))^   +  eU1(Ko(l+eH1(t)),t) + 0(e2) 

= U0(H0)+eTT1(.70,t) + ei 

= TJo(Ho) + eUl(Ho,t} + e 

)  - 
ff_(t) + 0(-c   ) 

H1(t)+ V(e) 

C(H0(H-eH1(t)),t,e) 

=  C, 
r fo  * 2 

(H0)   I + eC1(H0,t} + e(!5S) H^tJ + CL   ) 

L v 0/n=H0 

P(H0(l+eH1(t)),t,e) 

= F0(H0)[l+eP1(^0,t)+e('^>) H-^t) + C(e   ) 

Comparing   (23)   with  (22)  wc  have 

(2k) 

TTo<H0)   =  1   -   M- 

C/(!:IC)    =   H   (1+H~) 

:'-••• 

• .s •••.„•• - .J'^VJi»«i£j«'"'"~.."!'.1-*-..     ' 



7. 

It is then clear from (9) that U , CQ and P0/p-, are all 

functions of *l/H which depend only on Y« 
Prom the first order terms in e, we find 

%(H ft) = -(*£)     Hx(t)- (l-ti
2)tHlt(t)- (l-^

Z)t2~2a 

V °\=H0 

(25)   Cl(H0»t)« -(h) Hl(t). tHlt(t) + r| =2^ 
(l+ix2) 

2-2a 

VV^-fj;)       ^(tj-atH^tj-^t 2-2a 

The perturbation H, (t) in the position of the shock car- 

be eliminated and (2f?) reduced to two conditions on the flow 
quantities, namely for Yl=  H , 

(26) 
i1v1* plCl + Yl P-i = 6,t 

2-2a 

a2Ul + ?2C1 + Y2Pi • 
a21tUlt + P2ltClt = 62t 

2~2a 

where a,, (3-,, etc. are all constants. 
To find the flow behind a shock we now have to solve 

the system of hyperbolic differential equations (11) of third 
order and two conditions (26) on a space-like line, the 
shock path.  One more condition must be prescribed.  For 
example, we might prescribe the velocity of a particle 
corresponding to a given piston motion which does not differ 

much from that which maintains a progressing wave.  This 
would involve extensive computations although it can be 

reduced to a second order problem. 
Alternately and more naturally, wo may prescribe the 

total energy contained in the shook wave, that is, the 
energy imparted at t = C. This is essentially equivalent 
to prescribing one condition on the t-axis, namely that no 

i 

• • 

'**'*fie'4 •*'•- 

1 

1 
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energy is added.  Prom the general theory of hyperbolic 

equations we will have the correct number of conditions to 

determine the problem.  In fact this problem can be solved 

in terms of the solutions of ordinary differential equations 

In the case of a shock wavo in water- it can bo solved 

explicitly. 

Shock Wave of Constant Encrpy. 

First wo note that equations (11) with the boundary 

conditions (25) have the special solutions, 

u, = t2-2a(Xu(n) + hXi2<n>) 

c1 = t2-2a(X21(»l) + hX22
(vl)) 

(27) 
Pl =  t 

_ .,.2-2a, x3i<n> + hX32d» 
2-2a H,   = ht 

where h is  an arbitrary  constant  and   Xn»   X?l*    X-ii   is  th'a 

solution  of 

d *1  - (A\° 
'u 

(28) 

-  2Y-1(l-a>D;1C2X3 

2   ^fc-^-rfMX' 

<*X2 

^     Co 

1% -(iJXi - (|)c° c0X2 - ard-^D^Xi 

- 2(l-a)D;1(l-U0)X3 

which satisfies the initial conditions 

T*^w.vi-:in  ' nu .,.'.t,- 
L$">XM:.:!7*  7 
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(29) 

X11(HQ)  - -U-y-  ) 

2\i  (1+n  ) 

and   Xia»   ^22'   ^32  is  tbe   solution of  (28)   which satisfies 
the  initial conditions 

(30) 

X12(H0) 

^22(IIo) 

-..(to -  2(l-ii   )(l-a) 

Ar*t 

VJ=H0 

rE, 

° VHo 
A method for reducing the third order system (2o) to 

one of second order is contained in the Appendix. 

It turns out that the solution (2?) is just the solution 

which satisfies the condition of constant energy if h is 

chosen appropriately. 

Let the total energy contained in a spherical shoe1.: 

wave at any time be E(t) where 

R(t) 

(3D E(t) • *** |    (z P»2 + ^FT) 
2 , r dr 

Here R(t) is the position of the shock.  In terms of the 

variables (2) and (3)> (3D becomes 

H(t)    2 
(32)  E(t) - -i^a3 J* \l %  + O^ P rf**"1 t^2 d*t 

where  i*^= H(t) represents the shock. 

',>i»i(riii.i)iinj'ii M."^MI ini). «n •,iii.tu»aiiMyiHfe»MJitt<Piiigi>'^ ^ JHM 

1 
I 
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In the case of an infinitely strong shock, where p, = 0, 

E(t) will be constant only if a = 2/5.  Then 

(33) 

If we now  consider that  second order terms in p,   can be 

neglected and use  the  approximations   (10)  and  (19)  we  obtain 

H_   ,       „2 
(3k)    E = - iZ* 

CO o 

7?w 

" tH eHoHl 

H 

/-,   YU? 1 \ .1 
^^ + ^rjpon- 

h=*0 

m  l { (i ^ A) Vl* ^VV! j>T3 - V 0( eJ 

It-rrp 
= E   +^l   s-V5tV5     . 

o      3(Y"J-'     ° 

From tho  first  order  terms  in e using,   from (21), 

e  = X2  c2 H2a - ?S yp  o'1 H^5 

1     c TV    "1^1     Ho 
we  obtain 

(35)     H^2!^ 

o Jn=H0    uco    (_ o 

+  5—^ u, -u^C, ; .-3 
i-Vi'f V dYl 

Pi      .6/5 w-2 

or,   using  (2Lj.) , 

•*•/.'•   -,'-,*  -••"•••• • —"iiti(T"-,*f •   i; •    — ••-.-•.-.'.•i ;.• ••... -'.*-•     •.-..-.   /"^^i-T      ..ij^---.M. .;.      '  • 

L 
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36)  HX aua^l • £ I(i I * Jr) PX 

o y 

7TFTT 
.6/5 

+ 'A' 
Co 

Wo can new show that (27) is just the solution of (11) 
and (25) which satisfies (36) if h is chosen appropriately. 

Substituting (2?) in (36) using r'Xt = H0 to first order 

on tho shock yields 

^oo ^ ^  c 

^TTFIT 

or 

(37) 

where 

A 

A-jh + A2 = A^ 

woo L v "o 

YU o • »^ -l!oriLT21/5 

(ft) 

i   f/   u2     , > vir 1  po /'v? T
21

/^' /n > 

• • -1 - •     -   -      -   *• 

•„.—»>.   i ~   "*': -^L" "V"' 

— M««—!»«•••—» 

'••^^^r^',/;,. 

!'«»-       ---?., 
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Equation (37) can always be solved for h provided A-j j-  0. 

Thus the first order increment in the energy vanishes and 

we have a complete solution of the problem in terms of "}£_. 

etc. 

Prom (7), (9) and (21+) we see that V!    and GQ and P^p^ 

are functions of Y{/ H only and independent of p1 while 

P/p, is a function of Yl/SQ. 

Thus the coefficients of the equations (28) are functions 

of Y\A^0  and hence by (28), (29) and (30) the functions %ll» 

#21' %31» Xi2' X?2' X32  dePend on rlAl0  only. 
Thus A1 and A2 are constants depending only on the 

solutions of fixed differential equation* with fixed initial 

conditions, depending only on y. 

Substituting (27) in (10) and then in (3) we find 

u = | T<uo+et6/S<Xn+hXu»> 

- f f3/5 n-2/5„o +1 et3/S V2/5( Xn* h *12> 

0 . f t-3/Sn-2/SCo + | £t-VSU-2/5Co(X21 + hX22) 

p = £ t-^/5 n-U/5Po +£ , VVSP0(X31*»i X32)      • 

Note that for fixed y^ the perturbations in u and c 

increase with r while the perturbation in p is constant. 

Now the pressure dies out behind the shock and the 

maximum pressure occurs at the shock; thus from (22)   and (3) 

we find 

2 

max & H^PjtH^f^Mfh^JlH2)?! 
1+u 

In other words, the maximum pressure is the pressure of the 

Taylor point blast wave plus a constant. 

r 

- -. _il-^.-.;'. _S.\ 

Lw -•-•• • 
W>*n  • Si'-—»'»''-»»»•' •' MiQi  -   "'  • • 

- VS3 * , 
• * • • 

•••'- v/M^-^z:•'•.•• 

•»fj?tnHt.?f-* 
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Shockwave of Constant Energy in Water. 

In the case of an explosion in water the functions X«* 
etc. can be calculated explicitly. 

Here we have F « A( (-2-) -1) where A = 3000 atmospheres 

and y = 7.  Then we replace the last equation of (3) by 

P = \2t2r~2(p +A) ,  In this case, 

(39)    uo-i-^,    cja^l+n2)  .    POS Pl(l-n
2) ^J2/5 

# 
is  the   solution  of   (9)   and  (2k)   .     Then An =  0,   B    •» 0 while 
EQ and D    are  constants. 

The differential equations  (28)   then have  constant 
coefficients  in the  lowest  order terms and  the  solutions are 
powers of Y{ .     Satisfying equations   (29)   and  (30)  we find, 

(1+0)     X^ 

*21 

,    .5.U7S8 ,     N0.3212 
-1.00197 (£-) -  .5605 ($-) 

= 2. 2689 (*J 
x-1.6000 

-5.1+262 (*f 1+788 

p.3212 

-31 = -1.5126 ,/ 

(* 

+ 2.3597 (|f-) 

-1.6000 .     x5.1+768 
-2.31+71 (£) 

+ 1*1811 fe.)0 

"12 =   -0 
.1+738 

X22 ~ 

'"•23 

.3385 &/ 

1.3553(5-) 

.   /rt x-1.6000 

+ 0.0885 C^-] 

0.3212 

0.3212 

,-1.6000 f     f .1*788 •     v 
-2.1039 (*&- ! - o.i+5il+.(^-) 

0.3212 

Vao V 

toy - 0.9100 
(^,788 

,     xG.3212 
- 0.1865 (^-) r. 

Thia   special  solution is  due  to H.   Primakoff, 

•.;•>; ~*;*-§*£i-3v3frZf*-> 

^Mi^MmiS^0i»fm9w^f^^^^m 

fc 
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buuji.ii/Mvj.i.n     V >Y /     EUlO     Vqu/      ili     \_>V/     aiiU.     O.IJX.U     \ J f jl      WO     X XI1U 

that 
h = -3.^930 

*«4VA    ^ j.AidJ.xjr 9      J- i."v Will      \ C f   /   , 

(l).l)    ux = t 
.3212*) 

c.   = vl 

n 

/Sl-3S53(£)    -8697(t) 
•a f /w x-l.6000 /y.  s5.ij.788 A    NO.3212") 

r3|-1.6i*2 (i) *^323(^J +1.8326^) j 

r3f   , •/K V^CO        _,    f. 14-783 ,    ,0.3212] 
r J -2.^662 l3-y .x.vc^^L.J *Wtf*9^ j 

H,   = -3.I+938  t6/5 

In Figures 1, 2 and 3 wo have plotted the path of the 

shock as a function of time anc" the maximum pressure as a 

function of time and distance. 

State Behind a Detonation. 

include the chemical energy of the detonation.  We then have 

for the conditions across the front 

(k2) pfu-z) = - p-^Z 

2        2 p(u-z) + p = p, z + p.^ 

O(Y-1)  ^ 2  D-^Y!*-!)   1 
-•&-. 

whore E and E, are the energy of formation per unit mass of 

the burnt and unburnt material respectively, and Y-I IS the 

ratio of the specific heats in the unburnt gas.  In terms of 

tho variables (3) and (II4.) the last condition of {kZ)  becomes 

,i 



UVJ-Z^-MI-H^C" = v> 
2  2 (E-Ej) 

15. 

x2  ^X-2^2 

If we perturb about a strong detonation, i.e. setting 

iiwi-u, )cc + E -E, = 0 we oan find the undisturbed flow as a cy      "a  o      1 

spherical wave and the perturbed flow satisfies (25) with 

different constants for the coefficients of r   . 

In this case there are again special solutions of the 

form (27) where now the initial conditions (29) must be 

adjusted appropriately. However, in this case we need one 

moffl condition on the flow and the special solution will not 

in general satisfy it. 

For Y = 2 we have U (H_) = C (H ) or u = c at the shock. 

The unperturbed detonation ia then a Chapman-Jouguet 

detonation.  If the perturbed flow is also behind a Chapman- 

Jouguet detonation we obtain a relation between U,(H ), C-,(H ) 

and H,(r).  This relation can be satisfied by solutions of 

the form (27) for an appropriate choico of h. 

Appendix. 

In this Appendix we will show how equations (28) can be 

reduced to one second order equation.  In general, equations 

(6) and the shock conditions (25) can be reduced to a second 

order equation involving the unknown shock function H,(x)-. 

Prom equations (8) we see that 

'-' (A) (§! - H rk; - o 
v 

'* (*)c "(^c
T^= ° 

and from (11) then, 

. . • ' . •• 
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(A.2) 
dV.    ,   dY, 

•(&(*£-^M)* j& (l-g) c"1Y- 

dX *X- 

«Xi 

r1 2.(-1--g)   v 

t(5)°coX2-V
1c2

0I.^(l-a)X3 

If we introduce new depondont variables, 

(A.3) 

«2<*> =^FT X2K) + ^i^)u0 

eqviations   (A.2)   reduce  to, 

d^ 

XV, 

2 
2U  -1  A       1-U     /.>o ,   C     /,\0 / 2C    \ 

-ir^-^(§)l,^^(l)c-(
1 + ^)(1-a,n 

2 
/. \o  C -, 2C„ 

-ft] -§*S*«2 •-£* u-«>«3 

v^i 

.«R 
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17. 

TT^ ri^f =  ("3 + -^(X-l)     * 2(1-0)*!   -   (2-2a)^2 

~U~^ ^d^= ("3 + 2Y
    <

X-1)
 

+  2(l-«>)«i -no
x(2-2a)^3 

By introducing now dependent variables we   can reduce   (A.lj.) 

to a much  simpler form.    Wc   set 

(A.5)      7 * r w-%- 

where H^ is any fixed value of |^.  Thon (A-1+) roduces to 

'o dy (A.6)    D^ -£• K0q + r.o42 + 2{l-a) -4 ?3 = 0 

*2y " ^1 = ° 

C3y - H3«! - 0 

where K and L are functions of y, 

(2U -1    1-Un   f.  xo 

o 

- C     / A \0 -) C 

o 

and ^p and ^^ are constants, 

«• 

^I7ii;T?%sr;c^R^K^f. 

'":-^^^:..; 
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«j« 

I     m O \ \ a.o; — ~> O..-I \ + 2v"- - 2(l-a) 

^3 = 3 - ^§TX + ~T - 2(1"a) 

The solutions of tho third order system (A.6) con also 
bo expressed in terms of the solutions of a second order 

differential equation. Wo introduce tho function G where 

(A.9) 

(A.10) 

dy G = £- 

G(YC) = 0 

where Y is some fixed value of y. o 
Then from the last equations (A.6) we obtain 

(A.11) s2(y>  = W + ^2G(y) 

(A.12) €3(y) = C3(YQ) + ti3G(y) 

Substituting (A.11) and (A.12) in tho first equation of (A,6) 

yields 

(A.13)  D. 2» + K 
dy 

- -LnC?(Yj - 2(l-a) jz«3(Y0) 
o 

V^xo' 

Now ^p anc* ?-i are prescribed for y = Y by (29) or (30) 
Thus we have a differential equation (A.13) for G and two 

boundary conditions (A-.9) ^nd (A. 10) at y = Y_. 

. -'•-. ... f «.,-'i»\* .i'.. iJk. -~ ; •-  ..~ . J>SfiS 

i 



• 

-    . 

- 1 

c. i 

pi-* i''. •••; *;> ^fe*^"^ '*4Mt 



20. 

I 
to 

'•-: 

w 

CD«H 

OJ   O 
o 

P-t o 

£ -P 

l| 
ST* ci 

O 

o 
o 

® 
•P 
o 
03 

C 
o 

! n 
i "3 

i & 

o 
CO 

i—i 

H 
O 

. o 

••; O 

'  / .„ O 

CO 
-; O 

i 
-4- _ 
o 'O -4- -=t- J- 
H r-f o O o 

•^ K r-l iH r*4 
*A * 

CO O^i p-i 

r. 
IJ 

i 

I 

^^«^*^ 



21. 

03 
^ 

: © 
•P 

! 

1 

<D 
P •« 

o o -.1 

o o p 
C u o 

ra cd u C) 
a +s o <s 

ra o fc 
© «H d O 
u a 3 o 
? 

r^ 
w o 

! 

a> o ! 
k fc £ i P" %, o i 
ti, •n 

'H g  -P 
&4 3 c II 

S M 

o 

O 

H 
K 

r-i 



r« 

1 
Because of our limited supply, you are requested to return this copy WHEN FT HAS SERVED 
YOUR PURPOSE so ihst it may be made avat lafoie to other requesters.   Your cooperation 
will be appreciated. 

NOTICE;   WHEN GOVERNMENT OR CTIIEZ; SS&V.r'S&S, SPECIFICATIONS OR OTHER DATA 
AR~E~U§KD FOR ANY PURPOSE OTHER TH.AK2K CONNECTION WITH A DEFINITELY RELATED 
GOVERNMENT PROCUREMENT OPERATION THE U. S. GOVERNMENT THEREBY INCURS 
NO RESPONSIBILITY, NOR ANT OBLIGATION WHATSOEVER; AND TEE FACT THAT TFE 
GOVERNMENT MAST HAVE FORMULATED. FllBNISliED, OR IN ANY WAY SUPPLIED THE 

t SAID DRAWINGS, SPECIFIC A >R OTHSft DATA IS NOT TO BE REGARDED BY 
IMPLICATION OR OTHERWISE AS IN ANY MJfcflSER LICENSING THE HOLDER OR ANY OTHER 
PERSON OR CORPORATION, OR CONVEYING ^A&Y RIGHTS OR PERMISSION TO MANUFACTURE, 

MAY IN ANY WAY BE RELATED THERETO. US1?!,"   V#P&-   SJ.C3.K 

Reproduced    by 

DOCUMENT SERVICE CENTER 
KHOTT BUILD1HS, DATT0H 2, @H!0 

J 


	0001
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027

